Estimation of Eigenvalue Domain of Interval Parameter Matrices
نویسندگان
چکیده
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملCharacterizing and approximating eigenvalue sets of symmetric interval matrices
We consider the eigenvalue problem for the case where the input matrix is symmetric and its entries perturb in some given intervals. We present a characterization of some of the exact boundary points, which allows us to introduce an inner approximation algorithm, that in many case estimates exact bounds. To our knowledge, this is the first algorithm that is able to guarantee exactness. We illus...
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملParameter Estimation Using Interval Computations
Parameter estimation is the problem of finding the values of the unknowns of a mathematical model for simulating a complex system. A model is generally given by differential equations or systems of equations or inequalities. Interval computations are numerical computations over sets of real numbers. In this paper intervals are used to model uncertainty in parameter estimation problems—for insta...
متن کاملEfficient estimation of eigenvalue counts in an interval
Estimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications and it is a prerequisite of eigensolvers based on a divide-and-conquer paradigm. Often an exact count is not necessary and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of technique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 1992
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.5.54